Spocanian Archives

NUMERALS AND ARITHMETIC
Back to
Languages | Dialects
 
This file
1. Survey of numerals
2. Arithmetic in Spocanian
 
 

1. Survey of numerals

In Spocanian, two numeral systems are used:

  1. The classic system is based on the "sacred" numbers erg (14) and rân (36). In this system there are special numbers up to 14, while 15 beschouwd is "14+1" or erg-ér, and 16 is "14+2" or erg-ten, etcetera.
    Furthermore, the following two numerals are also derived from erg: heferg (in fact "holfe-erg" or "half-erg", being 7) and tenerg (or "two times erg i.e. 28), while tenrân is derived from rân ("two times rân" i.e. 72). The remaining numerals are based on either 14 or 36, and the way in which this is done can be seen in the list below.

  2. The numerical system is based on (more or less) regularly formed decimals, entirely analogous to languages like English, Swedish or Spanish. Here, regularity is carried to such an extent that even numbers like 11 en 12 are compounded of 10+1 en 10+2 (cf. 13=10+3, etcetera). But the "classic" numerals lÿn (11), tesen (12), râsen (13) and erg (14) are so generally used that they are also found in the numerical system.

Spocanian does not have a word for "one thousand" (1000), but uses the compounded main-pérsa (10x100) for this. However, there is in fact a word for 10,000, i.e. plâr.
As regards the rest, see the list below.

The classic system is used in colloquial speech when referring to numbers and doing simple sums. For more complex calculations, one preferably uses the numerical system. In a scientific and a financial situation, one nowadays always prefers the numerical system, also in referring to simple numbers.


In the list below, numerals marked with an asterisk (*) are necessarily singular.

 ClassicNumerical
0nÿf, *zerâ*zerâ
1*érér
2ten, perdÿrten
3durdur
4fârfâr
5vÿr, *hentvÿr
6serssers
7*hefergheferg
8âke, nalaâke
9nynnyn
10main, tenhentmain
11lÿnmain-ér, lÿn
12tesenmain-ten, tesen
13râsenmain-dur, râsen
14*ergmain-fâr, erg
15erg-érmain-vÿr
16erg-tenmain-sers
17erg-durmain-heferg
18erg-fârmain-âke
19erg-vÿr, erg-hentmain-nyn
20erg-serstensa
21erg-heferg, sekkÿtensa-ér
22erg-âke, erg-nalatensa-ten
23erg-nyntensa-dur
24erg-maintensa-fâr
25erg-lÿntensa-vÿr
26erg-tesentensa-sers
27erg-râsentensa-heferg
28tenergtensa-âke
29tenerg-értensa-nyn
30tenerg-tendursa
31tenerg-durdursa-ér
32tenerg-fârdursa-ten
33tenerg-vÿr, tenerg-hentdursa-dur
34tenerg-sersdursa-fâr
35tenerg-hefergdursa-vÿr
36*rândursa-sers
37rân-érdursa-heferg
38rân-tendursa-âke
39rân-durdursa-nyn
40rân-fârfârsa
41rân-vÿr, rân-hentfârsa-ér
42rân-sersfârsa-ten
43rân-hefergfârsa-dur
44rân-âke, rân-nalafârsa-fâr
45rân-nynfârsa-vÿr
46rân-mainfârsa-sers
47rân-lÿnfârsa-heferg
48rân-tesenfârsa-âke
49rân-râsenfârsa-nyn
50rân-erg, main-hentvÿrsa
51main-hent-érvÿrsa-ér
52main-hent-tenvÿrsa-ten
53main-hent-durvÿrsa-dur
54main-hent-fârvÿrsa-fâr
55main-hent-vÿrvÿrsa-vÿr
56main-hent-sersvÿrsa-sers
57main-hent-hefergvÿrsa-heferg
58main-hent-âkevÿrsa-âke
59main-hent-nynvÿrsa-nyn
60main-hent-mainsersa
61main-hent-lÿnsersa-ér
62main-hent-tesensersa-ten
63main-hent-râsensersa-dur
64main-hent-ergsersa-fâr
65rân-tenerg-érsersa-vÿr
66rân-tenerg-tensersa-sers
67rân-tenerg-dursersa-heferg
68rân-tenerg-fârsersa-âke
69rân-tenerg-vÿrsersa-nyn
70rân-tenerg-sershefergsa
71rân-tenerg-heferghefergsa-ér
72rân-tenerg-âke, tenrânhefergsa-ten
73rân-tenerg-nyn, tenrân-érhefergsa-dur
74rân-tenerg-main, tenrân-tenhefergsa-fâr
75rân-tenerg-lÿn, tenrân-durhefergsa-vÿr
76rân-tenerg-tesen, tenrân-fârhefergsa-sers
77rân-tenerg-râsen,
tenrân-vÿr, tenrân-hent
hefergsa-heferg
78tenrân-sershefergsa-âke
79tenrân-heferghefergsa-nyn
80tenrân-âke, tenrân-nalaâksta
81tenrân-nynâksta-ér
82tenrân-mainâksta-ten
83tenrân-lÿnâksta-dur
84tenrân-tesenâksta-fâr
85tenrân-râsenâksta-vÿr
86tenrân-ergâksta-sers
87tenrân-erg-érâksta-heferg
88tenrân-erg-tenâksta-âke
89tenrân-erg-durâksta-nyn
90tenrân-erg-fârnynsa
91tenrân-erg-vÿr,
tenrân-erg-hent
nynsa-ér
92tenrân-erg-sersnynsa-ten
93tenrân-erg-hefergnynsa-dur
94tenrân-erg-âke,
tenrân-erg-nala
nynsa-fâr
95tenrân-erg-nynnynsa-vÿr
96tenrân-erg-mainnynsa-sers
97tenrân-erg-lÿnnynsa-heferg
98tenrân-erg-tesennynsa-âke
99tenrân-erg-râsennynsa-nyn
100tenrân-tenerg, pérsapérsa
101pérsa-érpérsa-ér
186pérsa-tenrân-ergpérsa-âksta-sers
   
200ten-pérsaten-pérsa
300dur-pérsadur-pérsa
   
934nyn-pérsa-tenerg-sers 
1,000main-pérsamain-pérsa
1,671main-sers-pérsa-hefergsa-ér 
6,493sersa-fâr-pérsa-nynsa-dur 
8,700tenrân-erg-ér-pérsa 
9,971tenrân-erg-râsen-pérsa-tenerg- 
heferg
 
10,000plârplâr
24,792ten-plâr-fârsa-heferg-pérsa-
nynsa-ten
 
30,000dur-plâr 
50,892hent-plâr-âke-pérsa-tenrân-
erg-sers
 
85,396âke-plâr-main-hent-dur-pérsa-
tenrân-erg-main
 
100,000lôkilôki
131,305lôki-dur-plâr-main- 
dur-pérsa-vÿr
400,000fâr-lôkifâr-lôki
560,000hent-lôki-sers-plârvÿr-lôki-sers-plâr
1,000,000melônmelôn
 45,000,000 rân-nyn-melônfârsa-vÿr-melôn
   
70,895,129 rân-tenerg-sers-melôn-âke-lôki-nyn-plâr-main-
hent-ér-pérsa-tenerg-ér

Instead of a dot between hundreds (like in Dutch), one formerly used to put a dot between thousands (in Spocanian multiples of one hundred) as well as after hundreds of thousands. The way the dots split up the numbers corresponds with how they are pronounced, but nowadays this is replaced more and more by the international system (however, dots are used in stead of commas, the latter typically being the Anglo-Saxon custom).


2. Arithmetic in Spocanian

Ordinal numbers are the numbers followed by the suffix -tef: durtef (third), maintef (tenth), âksta-serstef (86th), tenrân-erg-râsentef (99th), etcetera. Exception: in âke (8) the final e is dropped when -tef is added: âktef (eighth).
In numbers written with figures, -tef is abbreviated as f: 1f (1st), 10f (10th), 92f (92nd), etcetera.

Fractions are expressed with the preposition mip (from; out of), followed by an ordinal number, e.g.: dur mip hefergtef (three-seventh), ér mip pérsatef (one-hundredth). In stead of ér mip tentef (one-second), the word eft holfe (a half) is used. And in stead of ér mip fârtef (one-fourth) and dur mip fârtef (three-fourth), the forms ér korter (one quarter) and dur korters (three quarters) are preferred.

Arithmetic operations are expressed as follows (expressions according to the numerical system are highlighted in green):

3+2=5dur ôsp perdÿr kette hent
dur ôsp ten kette vÿr
three plus two equals five
16–2=14erg-ten les perdÿr kette erg
main-sers les ten kette main-fâr
sixteen minus two equals fourteen
6×8=48sers tuf âke kette rân-tesen
sers tuf âke kette fârsa-âke
six times eight equals forty-eight
 13:2=6½ râsen part ten kette sers ur holfe
main-dur part ten kette sers ur holfe
thirteen divided by two equals six and a half 
23=8ten helkara [hogoritos] dur kette âke two to the power of three equals eight
52=25vÿr helkara cadrat kette erg-lÿn
vÿr helkara cadrat kette tensa-vÿr
five squared equals twenty-five
√16=4ef ricinor erg-ten kette fâr
ef ricinor main-sers kette fâr
the [square] root of sixteen equals four
(literally: "the rooted sixteen gives four")
∛27=3ef durtef ricinor erg-râsen kette dur
ef durtef ricinor tensa-heferg kette dur
the cube root of twenty-seven equals
three
∜256=4ef fârtef ricinor ten-pérsa-main-hent-sers kette fâr 
ef fârtef ricinor ten-pérsa-vÿrsa-sers kette fâr
the fourth root of two hundred fifty-six
equals four

 

© De Twee Hanen v.o.f. • Kimswerd • The Netherlands

DA 77-101082 • SPARC 04 Apr 1991